www.electricalandelectronicsengineering.com

Resonance Quality factor

What is Quality Factor

In Resonant circuits the quality factor Q is defined as the ratio of reactive to average power

$$Q = \frac{Reactive\ Power}{Average\ Power}$$

www.electricalandelectronicsengineering.cm

www.electricalandelectronicsengineering.com

Quality factor in Resonant Circuits

At resonance the reactive power of the inductor is equal to the reactive power of the capacitor. The Quality factor Q can be expressed in terms of reactive power of either the inductor or capacitor

Mathematically

$$Q_s = \frac{I^2 X_L}{I^2 R} = \frac{X_L}{R}$$

www.electricalandelectronicsengineering.cm

www.electricalandelectronicsengineering.com

Quality factor in Resonant Circuits

By multiplying and dividing equation by I

$$Q_s = \frac{I.X_L}{I.R}$$

$$I.X_L = V_L$$
$$I.R = E$$

$$Q_S = \frac{V_L}{E} \text{ OR } V_L = Q_S \text{E}$$

At resonance
$$V_L = V_C = Q_S E$$

www.electricalandelectronicsengineering.com Quality factor in Resonant Circuits

In resonant circuits the voltage across reactive elements can be higher than the applied source voltage.

The reason is that Q in resonant circuit can be larger than 1

www.electricalandelectronicsengineering.com Quality factor in Resonant Circuits

Due to this reason while dealing with resonant circuits one should ensure that reactive elements are capable to handle the expected voltages and currents

Electrical and Electronics Engineering

The End

Visit

www.electricalandelectronicsengineering.com

For More